Arcs containing no three lattice points

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of Points on Arcs

Let z1, . . . , zN be complex numbers situated on the unit circle |z| = 1, and write S := z1 + · · · + zN . Generalizing a well-known lemma by Freiman, we prove the following. (i) Suppose that any open arc of length φ ∈ (0, π] of the unit circle contains at most n of the numbers z1, . . . , zN . Then |S| ≤ 2n−N + 2(N − n) cos(φ/2). (ii) Suppose that any open arc of length π of the unit circle c...

متن کامل

Lattice Points inside Lattice Polytopes

We show that, for any lattice polytope P ⊂ R, the set int(P ) ∩ lZ (provided it is non-empty) contains a point whose coefficient of asymmetry with respect to P is at most 8d · (8l+7) 2d+1 . If, moreover, P is a simplex, then this bound can be improved to 9 · (8l+ 7) d+1 . This implies that the maximum volume of a lattice polytope P ⊂ R d containing exactly k ≥ 1 points of lZ in its interior, is...

متن کامل

Lattice Points in Lattice Polytopes

We show that, for any lattice polytope P ⊂ R, the set int(P ) ∩lZ (provided it is non-empty) contains a point whose coefficient ofasymmetry with respect to P is at most 8d · (8l+7)2d+1. If, moreover,P is a simplex, then this bound can be improved to 8 · (8l+ 7)d+1.As an application, we deduce new upper bounds on the volume ofa lattice polytope, given its ...

متن کامل

Projecting Lattice Polytopes Without Interior Lattice Points

We show that up to unimodular equivalence there are only finitely many d-dimensional lattice polytopes without interior lattice points that do not admit a lattice projection onto a (d− 1)-dimensional lattice polytope without interior lattice points. This was conjectured by Treutlein. As an immediate corollary, we get a short proof of a recent result of Averkov, Wagner &Weismantel, namely the fi...

متن کامل

On circular-arc graphs having a model with no three arcs covering the circle

An interval graph is the intersection graph of a finite set of intervals on a line and a circular-arc graph is the intersection graph of a finite set of arcs on a circle. While a forbidden induced subgraph characterization of interval graphs was found fifty years ago, finding an analogous characterization for circular-arc graphs is a long-standing open problem. In this work, we study the inters...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1991

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-59-1-87-90